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EDITORS' NOTE

The Soviet physicist V,A. Pock is well known by physicists for his
work in quantum mechanics, particularly in connection with the Hartiree-
Pock theory of self-consistent fields, The purpose of this collection
is to acquaint the reader with Fock's more recent work on the propaga-
tion, refraction, and diffraction of radiowaves. Fock's early papers on
this subject (the first five papers in this collection) appeared in

1ish almost a decade ago. However, all of his more recent work has
been published in Russian and is relatively unknown outside the Soviet

Union.

The translations in this collection have been basel upon transla-
tions obtained from several sources., Mr, Herman V, Cottony of the
Rational Bureau of Standards and Miss A. Pingell of the Naval Research
Laboratory, respectively, made the original translations of Chapters
VI and XI of this collection, The translator of Chapter VIII is un=
known to the editors. The remainding chapters were translated by
Morris D, Priedman, Chapters VIII, IX, and X were made by Morris D,
Friedman, Inc,, Newtonville, Massachusetts, Chapters XII and XIII were
made in cooperation with Lincoln Laboratory.

According to the Library of Congress scheme for the transliteration
of the Russian alphabet, Fock's name appears as Fok, However, because
of the more general use in scientific literature of the form Fock the
editors have retained this form in this collection,

N.AQL.
P. Bo » Jr.
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V.A, POCK'S CONTRIBUTIONS TO DIFFRACTION THEORY

’

V.1. Smirnov

1. INTRODUCTION

V.A. Fock became interested in diffraction problems comparatively
recently, Within a short time he succeeded in obtaining numerous
results which are very important both in theoretical and in practical
aspects. By forecasting the paths of further investigations in this
field, they undoubtedly are epochal in diffraction theory.

The solution of the problems of electromagnetic wuve diffraction
consists of finding solutions of the Maxwell equations subject to
specific initial and boundary conditions on the diffracting surface and
radiation conditions at infinity., The initial conditions are often re-
placed by the requirement that the solution be sinusoidal in time,

Fock devoted himself to an analysis of problems of the last kind, Prior
to the Fock investigations in the theory of electromagnetic wave dif-
fraction, only solutions for a small number of problems for obstacles

of a specific shape were known, such as: the infinite wedge, cylinders -
¢ircular, elliptic and parabolic - and also for the sphere, In addi-
tion, the problem of diffraction from a paraboloid of revolution, solved
by Fock himself in 1944, should be added to the above list,

1




The previous solutions of the problems mentioned above, which
were represented by series or by integrals, were not very useful in
the important practical case when the wavelength 1s small) in comparison
to the dimensions of the obstacle, and they should be considered as
only the first step in solving the problem, The next step must be the
derivation of formulas fram which qualitative physical consequences
can be obtained and which are, in addition, sultable for practical
computations. Hence, one of the possible directions of work in dif=-
fraction theory was the development of a method of isolating the prin-
cipal parts out of the complex formulas which constitute the exact
solution of the problem, The Fock investigations were made in this '5
direction when solving the problems of diffraction from a conducting
sphere as well as from a paraboloid of revolution, Naturally, the
method cited is applicable only in those few cases when an exact solu-
tion can be constructed successfully. Consequently, an urgent need
existed for the creation of an approximate method of solving diffrac-
tion problems which, while being general, would lead to relatively

simple formulas,

The fundamental works of Fock on diffraction are devoted to the
construction of such an approximate method and to the solution of a
number of practical important problems by using this method, Fock
developed and used the parabolic equation method proposed by Leontovich.
This permitted him to give not only new simplified derivations of
results he had obtained earlier by other means but also to generalize

u




them in various directions (to take the finite conductivity of the

body into account; to determine the field close to the surface as well
as on the surface itself; to take atmospheric inhomogeneities into ace-

count in the problem of diffractdon of radiowaves around the earth’s

surface),

As is every approximate method o:F solving boundary value problems, »°
the Fock method is based on the smallness of certain parameters en-
countered in the problem. The quantities which are usually small in
the problems of radiowave diffraction are: -l—%]- and %, where
T =€ ¢4 _l_%‘g_' is the complex dielectric constant of the diffracting
body; A 1is the wavelength of the incident wave; R is a quantity of the
order of the radius of curvature of the surface of the body,

It |7} = @ (perfect conductor), then the field within the conduc-

q tor is zero, i,e., it is known in advance, This circumstance permits

| the diffraction problem to be formulated only for the space outside the
body, vhich leads to substantial simplification, The situation in the
imperfect conductor case is similar if the inequalities |77‘ »>1 and
_% 2 s> 1 are satisfied,

In this case, the field within the conductor appears to be van-
ishingly small everywhere except in a surface layer of thickness of
order M 7)|, vhere the influence of this layer can be taken into
account by using boundary conditions for the external field

ij
c

(1)

.ﬁ(gx-%) - "‘yﬁz."nzﬂy ,etc.
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where Jx’ Jy, J' are the components of the current density; n » ny, nz
are the unit vector components normal to the body surface, Acad, M.A,
Leontovich first suggested the aforementioned conditions in a rather
different form,

Consequently, the approximate formulation of the diffraction

to the body, A further essential simplification in problems of radig-
wave diffraction from bodies of arbitrary shape results from the prine
ciple of the field being local in the half-shadow region,

If the electromagnetic field near tha surface of a conducting
body were to be determined Successfully, and, therefore, the current
distribution in the surface layer, then the solution of the diffraction
problems would be attained by simple well-known formulas for the vector
potential. The field in the 11luminated region near the body is subject,
with a high degree of ccuracy, to the Fresnel laws of reflection, and, ‘
therefore, can be determined easily; the field decreases rapidly to V

Zero in the shadow region,

d = /2 RY , where Ro is the radius or curvature of a normal section
of the body in the incident plane,
Fock succeeded in showing that the electromagnetic f1e1d in the
half-shadow region is, to the accuracy of quantities of the order of
ir
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1’%- , of local character, 1.e,, it dependsonly on the values

of the incident wave field in the neighborhood of the given point, on
the geametric shape of the body near this point, and on the electric
properties of the conductor, '

After the principle of the local field had been established, there:
remained only to find the solution of the diffraction problem for a "
convex body of sufficiently general shape, and to derive the approxi-
mate formulas f;ar the field on its surface, It is coavenient to take
the paraboloid of revolution as such a body. In solving the problem of
plane wave diffraction from a paraboloid, V.A, Fock used separation of
variables in parabolic cwordinates, He constructed the exact solution
in the form of integrals and performed the approximate calculation of
these integrals under the assumption that ka>> 1, where k is the
wave number and a 12 a parameter of the paraboloid of revolution:
xztyz-Zaz-az = 0,

The characteristic direction of the work on diffractior. explained
above is sufficient ‘0 indicate the important principles of the methods
developed. Basically, these methods reduce to the following:

Fock indicated an effective method of approximately evaluating in-
*inite series and integrals (containing a large parameter) which repre-
sent the exact solutions of certain problems of electromagnetic wave
diffraction, This method permitted him to develop, for example, a
rigorous theory on radiowave diffraction around the earth's surface

surrounded by a homogeneous atmosphere ‘{"Ditfraction of Radiowaves

v




Around the Earth's Surface", 1946)Y, He was also the first to establish
the very important principle of the local character of the electromag-
netic field in the half-shadow region, us\'nq __ widely the Leontovich
conditions? in the approximate formilation of radiovave diffraction
problens,

This work afforded him the opportunity to construct an approximate,
but yet sufficiently accurate for praciical needs, theory of radiowave
diffraction from conductors of arbitrary shape as well as a theory of
radiowave propagation around the earth taking inhomogeneities of the
atmosphere into account, The explanation of this theory is given in
"Theory of R;diowavo Propagation in an Inhomogeneous Atmosphere for a
Raised Source®, (1950)°,

These works on diffraction have played a very important part in the
history of this question and, at the present time are among the clearest
attainments in diffraction theory and its applications, Let us turn to .
a more detailed explanation of some of these works,

The problem of radiowave diffraction in a wacuum relative to a con-
ducting sphere is solved in "Diffraction of Radiowaves Around the Earth's
Surface"l’e

Let the sphere be of radius a and be characterized by the di-

electric constant € , the conductivity O and the magnetic permeability
unity, Let the spherical coordinates (r,6,f) be introduced and let a
vertical electric dipole be placed at the point r = b, 6 = 0, where

b > a. The electromagnetic field excited by such a dipole can be ex-

pressed by means of the Herts function U(r,6,p) which satisfies the

equation
vi
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(2) AU+ XU = 0

Hence, in order to determine the value of the field on the spherefs
surface, it is sufficient to kndw the quantities:

9(r0) .
(3) U‘ - U(a’e)?) Bn'd U: = _é-:— ]
r™a

In 1908, Mie obtained an analytical representation for the function
U as an infinite series of spheril:al functions, The extremely poor
convergence of the series prevented qualitative physical consequences
from being obtained and prevented practical use of the aforementioned
exact solution of the problem, A major step toward a practical use of
these series was made by Watson in 1918, But the transformed form of
the solution was still unsatisfactory, both because of its complexity
and because it was only applicable in the geometric shadow region
(1.e., far from the horizon). Only in 1945 did Fock succeed in obtaine
ing an expression for the Hertz function suitable for all cases,

Fock transforms the series ror.U‘ and U'. into complex integrals,
But, in contrast to the precedirg authors who tended to reduce the
integrals to a sum of residues, Fock isolated from the integrals a
principal term which yields sufficiently exact values for the functions
investigated.

It was shown in this work that if waves passing through the thick=
ness of the earth and waves circumscribing the earth because of dif-
fraction are neglected because of their analiness, then the value of
Uy can be represented by the following integral
vii




(&) Zlq'- ZG‘T Irg;(r.}c"’é dy where

T habVZsm®

(5) PN . — T ok
f,  ta)—Fx  (e)f L)

ot Pl Drg) Lretd £ ctag).
9 Gje = 2 Ttr+1) P(%’ 274 z °%# )J

@ &P, g o, VZ4,., »,

(8) A,n,a)- _3';'2:) s Ka .zi()-ia the wavelength)

(9) K, = kYy ; 7=£+¢'f££;

PUlp,r; ) s the hypergeometric function; the contour ¢ is a line

intersecting the positive Part of the real axis going downward (to the
left of the poles of ?(r).

A similap integral is obtained for U The essential feature of
thia method of approach is that the integrals obtained can be calculated
oasily and with great &ccuracy for any value of o,

viil
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The characteristic parameter of the aforementioned integrals is
the quantity p -{/? cos o whex.‘o 7- is iho angle between the
vertical at the observation poin't and the source direction, If p>>» 1
and the observer is in the line of sight region (more accurately: if
kh cosTS >, vhere h is the height of the source above the earth), °
then the « = uation of the integrals leads to the well-known "reflec=
tion formula", This evaluation of the integrals leads to the Weyl-van
der Pol formula valid for points at large distances from the source
tut still well within the line-of=-sight.

The half-shadow region (where p ar 1), for which approximate
values of the fisld were not known) is of greatest interest, A method
is indicated in this werk of evaluating the integrals for this case
and the following formila is obtained

1ka® k.4

e - ixt w(t-y)

0) U, = b ./5 d

(10) a 20 7 f ° wi(‘t‘)T qwy(t) 4
r

in which wy(t) is the complex Airey function related to the Hankel

function of one third order by the relation |

27
(1) w(t) = /.’?.1 3 (-t n.f:') [-g-(-t)’/‘] :

The contour | goes fromic to O and from O to ¢ o ;

Vs

- ¢]
@ e (e - (§) g - o) B
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The formila for the half-shadow region is the main result of this
work, It is applicable in all cases of practical interest, It trans-
forms into the Weyl-van der Pol formula far from geometric shadow in
the line-of-sight region. This formila can be reduced to a rapidly
converging series when the transition is made into the shadow region
where (- p)> > 1,

In the work "Solution of the Problem of Propagation of Electro-
magastic Waves Along the Earth's Surface by the Method of Parabolie
Equations" (written jointly with M,A, Leontovich)®, a problem is
analyzed which is similar to the problem in the paper mentioned above
but the method is essentially different,

The influence of i'.ho earth!s surface is taken into account by the
Leontovich approximate boundary .conditiona and terms in the field equa-
tions are neglected which are small and are of the order of ¢ I—}ﬁ and

.l.c.].:a.- o As a result, the "approximate" formulation of the problem for

the spherical earth case is simplified substantially and is reduced to

the problem of solving the parabolic equation

2
(13 v 1 _a_w_ + -@.!- = 0
) o2 ’ [(x ’ x) oy ax] !

0

in the region exterior to the earth and subject to the additional

conditions
(1) a-* qQ*+t—|w -Oandm{_-o.
y & y-O x—0 =
>0
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1t is difficult to estimate the error introduced by discarding the

namall" terms when using this method, To do this the well-known
Fresnel "reflection” formula must also be considered, The essential
advantage of the parabolic equaf:ion method is its great simplicity as

well as the possibility of solving more complex problems (for example,

vave diffraction from bodies of arbitrary shape).

In this work the first case considered is that in which the
earth is assumeci to be planar, Then the spherical earth case is con-
sidered and the same formulas are obtained by using the parabolic
equation method as had been previously obtained by approximately.
suming the series which yleld the exact solution of the problem,
The agreement between results obtained by these two methods provides
a justification for the use of the parabo.ic equation method in
problems of radiowave diffraction from good conductors, Fock used
this method widely in later works on diffraction,

In the work "Propagation of the Direct Wave Around the Earth with
Due Account for Diffraction and Refraction",5 the problem is solved
under the assumption that the surface of the earth is homogeneous as
well as that the dielectric constant of the air is a function £ ‘(h)
only of the height h = r - a of points above the horizon, A vertical
dipole performing harmonic oscillations defined by the factor it
is placed on the surface of the earth at the point r = a, 6 = 0,

A rapidly varying factor is isolated from the Hertz function U
and a new "slowly" varying function U, 4s introduced by means of the

=i

Al




formla

olkey,
(15) U = ’

€o(b)r 753In 6

where s = a6 is the length of arc on the terrestrial sphere from the
point where the dipale is to the point above the earth at which the
observer is situated, 22

The author neglects quantities of order (;;) in the equation
obtained for Up, After introduction of the nondimensional variables x
and Y by means of the formulas §

* n
3 a 2/
(16) h = Y; s = x
. V «
» 1l
where a = 1 E’ (0) is the equivalent radius of the

ol 25020) |

earth's surface, and after introducing the new function W, by means of
the formila "

£.(0)vE
(17) U, = ___o_‘_'f_

k

o |

the problem is reduced to determining the function % (x,7) from the

equation 2

F. ]
(18) 3"1,1 !

R dx

‘under the conditions

+yQ+ghg = 0(y>0)




T —

—

2 X

(19) _E_:.l..o qwl = O; m'l-—gi-i-. 0,
ody 0 x-+0 x
r ¥y>0

and the natural radiation condition for h >>1., The quantities q
and g, entering in the formulas reduced above, have the following

values

3fa* [e (0) 2t & (h) = E,(0) L
(20) q = _2.—1/-‘-(-%7—_—’ g = 2‘0@[ h -60(0) .

Investigation of the equation for w shows that if g = 0 and if

.
the radius a is replaced by the equivalent radius of the earth a’,

then the mathematical problem is reduced to exactly the same form as
when the atmosphere is absent., In the general case, g can be con-
1 ¢/a*

sidered as a function of the product Ay, whers 8= — — is
hy 2k

a small parameter, The solution of the problem is successfully repre-
sented by the contour integral:

AT

- ixt __ £(3,t)
(22) m -t Se Tper i
r oY 7=0

vhere f(y,t) is an entire transcendental function with a definite be-
havior at infinity and satisfying the equations

2
(22) dfefy-tey(8n]t = 0
Lo X
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t plane,

for this

(23)

field in the

in that region where the

currents which, in turn,

’2 kh2
4x 2s

The contour F is infinite and encloses the first

>>1,

The investigation of the solution in the half-shadow

conclusion that the wave reaches the

medium and undergoes diffraction according to the law of

half-shadow region at the horizon,

quadrant of the

Investigation of the solution of the problem constructed shows

that the laws of geometric optics are correct in the line-of-sight

region far from tjis horizon, The following inequality is the condition

The solution transforms into the Weyl-van der Pol forrula for smaly

values of x and y and for large values of p = 3/ka

—2—- cos 2".

region permits the

horizon with an amplitude &nd
phase corresponding to the laws of geometric optics for an unbounded

the focal

transmitter or receivers are located,

are sources of scattered waves,

xiv

Let us turn to the work in which the problem diffraction from an
arbitrary convex surface is analyzed,

An electromagnetic wave incident on a conductor excites surface

Consequently,




an essential step in the solution of the plane wave diffraction prob-
jem from a conductor of arbitrary shape is to find the currents excited
on its surface, (

In the work, "The Distribution of Currents Induced by a Plane Wave
on the Surface of a Conductor® ,6 the current distribution excited by a
plane wave on the surface of a convex, perfectly conducting, suffie 3
ciently smooth body of arbitrary shape is analyzed under the condition
that the length 'of the electromagnetic wave is very small in comparison
with the body dimensions and the radil of curvature of its surface, A
fundamental result of the work is the proof that the field has local
character near the geometric shadow boundaries,

It is shown in the work that when the incident wave is polarized
with the electric vector in the plane of incidence the current distri-
bution near the boundaries cited is expressed through a universal
(1dentical for all bodies) function G(€) of the argument £ = -‘E{-,
where [ is the distance from the geometric shadow bourdaries meas-
ured in the incident plane and d is the width of the half-shadow
region, An analytic expression is derived for the function G(§) and
detailed tables are given,

The solution of the problem of the current diatﬂbuiion is based
essentlially on the study of the solution of the integral equation for
the current density T on the surface of the perfect conductor, If
the monochromatic electromagnetic wave He -l;“ et £915 on the

conductor and if the following notation is introduced

xv

o R e




—p C [ ~»
() £r Q-ua)'® T S e

then the following integral equation is obtained for the surface cur-
rent density

= % -
(25) T - 23“’.21;£ nx[%x -7 £ ds’

large values of k (1,e, » small wavelengths A )

3ex
sidered, with enough accuracy, that 3- 2)
of the

shows, it can be con=-

on the illuminated part
surface (which corresponds to Fresnel reflection theory and

3=0 1n the shadow Part, In the neighborhood of the geometrical

shadow boundaries, the integral equation shows that in a bandwidth of

order

3
(26) d = %, Rf ,
where Ro is the radius of curvature of a section of the body surface
by the incident Plane, the current density and, therefors, the field

has an approximate value dependent only on the

value of the external
field ™

in the point under investigation, the geometric character=

of the surface element and on the electric properties aof the
conductor,

iatics

Such a result means that universal formilas for the current
xvi
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density on the surface of a perfect conductor in the half-shadow re-

gion can be obtained from the solution of the diffraction problem for
the particular case of a convex surface, The universal formulas men- §’
tioned are obtained by considering the problem of plane wave diffrace i}
tion from a paraboloid of revolution, o

The resmilt is ) »*
0 c‘g oot
(27) J = 3 G(f) - .3“?17 at , 3
T w/(t) ;

where w(t) is the complex Airey function and 1 4s a contour in the

SR B TR S D B S AT T S b, Dol TR T R |

complex plane going from infinity to 2ero along the line arg = %—77’

and from zero to infinity along the positive part of the real axis, An

investigation of the asymptotic values of G(£) for large positive and
negative values of £ shows that the current density 3 transforms
continuously when the transition is made frum the half-shadow into the
line-of-sight or into the shadow regions, into the values 23°% and
3.- 0, respectively. Detailed tables are constructed for the function
6(5).

The result of the preceding work is generalized in "Field of a
Flane Wave Near the Surface of a Conducting Body" in that, first, the
field is determined not only on the body surface itself b:xt also in a
certain surface layer with thickness small in comparison with the radii

of curvature; second, the body is considered to be not a perfect, but
only a good conductor in the sense that the M,A. Leontovich conditions

hold for the tangential field components on its surface, Furthermore,
xvii
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the polarigation of the incident wave may be such that the electric
vector lies in or is perps dicular to the plane of incidence,

i ———— e

Let us discuss the Fock work, "Fresnel Diffraction from Convex
Bodies", (1951)7.

Considered in this work is the diffraction from a sphere, wherein
refraction of the atmosphere is not taken into account. It is con=-
sidered that the source and the observer are above the surface of the
earth, where Iy is the source height and hz is the height of the
observation point, The field is expressed through the two solutions U
and w of the equation AU ¢ k2 = 0, The following notations are
introduced in addition to those used previously:

!

[
- (XkaY T, . - /AT

(28) s () ey v - ()7 g s
(29) qQ = (—) (7 + 1) i; 9 = (__)’ (‘0 1) i.
The following formulas hold near the surface of the sphere:
. °11{&8
30) U = e V (x,y1,75,9) ; :

olkad
(31) w s ————— 7 (x,77,72,9) ,

a /6 8in ©

and the attenuation factor V 1s expressed by a certain contour integral
containing two Alrey functions., All these results are contained in the

Sy e

work "Field from a Vertical and Horizontal Dipole, Raised Slightly Above
xviii




the Earth's Surface", (191,9)3 and in the 1951 work, an approximate ex-
pression is given for V 1in the region of the shadow cone, Hence, it
is considered that the parameter defined by the formula

. M7,
ERE

1 1arge and the quantity € = x = ofF] = o/7; is finite or mall,

(32) P2

™o functions are introduced

NPT U N S
(33) f(e) = @ 71,’7&[9 dec ;
L4 o 1 X
(%) go) = 2T Rl 1:).-%‘*2 .
T

Then the approximate expression V(xlyl, IZ,Q) is the following for
{ > 0 in the shadow cone

(35) . eiu°[/*f(f‘€)-s(¢f)*—i_g”(()].
V72 st

We do not cite the expression for @, . The principal term is
}2(£), proportional to the Fresnel integral, It is independent of
the material of the diffracting body. Superimposed on the diffraction
Plcture (Fresnel diffraction) determined by this term is the background
dependent on the function g(£) varles slowly in comparison with the
Principal term, This backgrouni depends on the material of the dif-
fracting body.

xix
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I. NEW METHODS IN DIFFRACTION THEORY

V. A, Fock .

oot

The general problem of the theory of diffraction of electro-
magnetic waves consists in finding a solution of Maxwell's
equations, having prescribed singularities (field sources)
and satisfying prescribed boundary conditions and conditions
at infinity.

The solution of this problem presents serious mathe-
matical difficulties, which arise chiefly from the necessity
of taking into account the geometrical shape of the obstacles
on which the wave 1s falling. The problem 1s somewhat
simplified if only monochromatic waves of given frequency
are considered, but the difficulties are still so great, that
the problem has not yet been solved, except in cases when the
obstacle is of a particularly simple form. The best known of
these are the cases of a perfectly reflecting half-plane or a
wedge, the cases of a sphere and a circular cylinder.

The cases of an elliptic and a parabolic cylinder have
8180 been considered, and the field of a plane wave incident
On a perfectly reflecting paraboloid of revolution (oblique
1ncidence) has recently been obtained b& the author. In the
few cages enumerated a rigorous solution of the problem in the

form of an infinite series of integrals has been obtained.

(2)




The aim of & theory is to give a picture reproducing all
the qualltative and quantitative features of the phenomenon
considered. This aim i1s not attalned until the solution obtained
is of a sufficlently simple form. If the rigorous solution has
a complicated analytical form, it constitutes only the first
step; a second step must be made - the derivation of formula&
suitable for numerical calculations.

This second step may be as difficult as the first one. To
give an example, we may mentlion that the problem of diffraction
of eléctro-magnetic waves around a sphere was solved rigorously
some 40 years ago (Mie). This problem includes that of the
propagation of radio-waves along the surface of the earth.

Owing to the slow convergence of the series involved, the
general solution could, however, not be applied to the latter
problem until 1918, when a transformation of the original series
into another rapidly converging series was found (Watson). But
the improved form of the solution was still unsatisfactory in
some respects, belng very complicated and applicable only in

the reglon of the geometrical shadow (far beyond the line of

horizon). A far more satisfactory form of the solution,
‘applicable in all cases of practical importance, has been
recently found by the author.? Thus, the way from the rigorous
theoretical solution to the approximate practical one took about

40 years of research,

(2)




To find first a rigorous solution of a diffraction problem

and then to transform it into another form suitable for numerical
calculations - this straightforWard method is, however, of a very
1imited application. It can only be applied to the few problems

FAl

admitting a rigorous solution in form of series of integrals.

In other cases (especially when the diffracting obstacle
is of arbitrary shape) attempts have been made to reduce the
problem to integral equations. Thesé attempts have proved
successful from the theoretical point of view; but with the
exception of a paper by the author,2 no use has been made of
the integral equations for the practical solution of the
problem, the general theory of integral equations being quite
useless for purposes of numerical calculation.

An approximate method, suffigiently general and leading
Y] i to sufficiently simple formulaﬁ.ié thus urgently needed. 1In
; the following we shall outline the principai ideas of such a
method, proposed and developed by the author,

Every approximate method i1s based on the smallness of some
parameters involved in the problem. We have to consider which

of the parameters of our problem may be regarded as small.

We are usually concerned with the propagation of waves in
air, i.e., in a medium with properties widely different from
those of the scattering bodies (obstacles), The electrical

properties of these bodies are characterized by means of the

complex dlelectric permeability

(3)
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n=¢€+1 =y (1)

(€ denotes as usual the dielectric constant, T - the conductivity
of the medium, w - the frequency). Now it is essential that in
most cases !n] »> 1. Thus we may choose as one of the small
parameters of the problem tue inverse value of Inl or the
quantity 1: |n| .
Next, the wave-length A in vacuo is usually very much
smaller than the radiil of curvature of the scattering bodies.
We thus have another small parameter - the quotient >.:R, where
R is the radius of curvature of the obstacle. It is convenient
to take .nstead the quantity
R Y |
m- R (2) '
In addition to the two small parameters defined above,
there may be others, depending on the position of the point
of observation. For instance, in the problem of the propaga-
tion of radio waves along the earth surface the angle of
inclination of the ray to the horizon may be regarded as small,
Let us consider the consequences of the fact that the
parameters 1:,_]];Iand 1:m are small., In the limiting case
| n lutoo (perfect conductor) a great simplification arises
from the fact that the field is known beforehand inside the
conductor (this field being equal to zero). We can confine

ourselves to the space outside the conductor by prescribing

(4)




proper boundary cenditions to the fleld in air (the tangential

components of the electrical vector should vanish at the sur-
face). A simllar situation arises if |n| i1s very large.

The field inside the body 1s in this case very small except

in a thin surface layer (skin-effect), and the influence of g
this layer may be accounted for by stating boundary conditions

for the external fleld., These are of the form

Y _ _ _ -
=, = ,ﬁ(Ex nE )= nsz n M, ete., (3)
where (Jx, Jy, JZ) is the surface current densilty vector,

(nx’ n_, nz) the unit vector of the normal to the surface,

y
E, the normal component of the electric fleld, the meaning
of the other symbols being evident. These conditions, first

stated by Leontovich3 in a somewhat different form, apply 1if

Iql >> 1 and 1if KR_\IT]I >> 1 (Ks2w: A). The latter in-
equality signifles that the thickness of the skin layer should
be small as compared with the radius of curvature of the
obstacle. Conditions (3) may be easily generalized for

arbitrary values of the magnetic permeability m,

Consequently the smallness'of 1: ] Inl pefmits'us to
confine our attention to the fleld outside and on the body,
which constitutes an important simplification of the problem.

We now proceed to examine the influence of the amallness

of the wave-length.

(5)




JUTe

et o

As well known, in the limiting case of small wave-lengths
the laws of geometrical optics become valid. Particularly, the
boundary of the shadow on the surface of the body becomes sharp
and well defined. On the one side of the boundary = in the
illuminated region — the field obeys very nearly Frensnel's
laws of reflection, and on the dark side the field rapidly
decreases to zero,

The approximation given by the geometrical optics is,
however, not sufficlent for our purposes. The point of interest
for us is the diffraction phenomenon in 1ts strict sense, 1i.e.,
the bending of the ray around the obstacle. This phenomenon
cannot be treated by the means of geometrical optics, and to
give a theory of thls phenomenon a more accurate solution of
the field equations is required.

The author succeeded in finding this solution by means of
a new principle which may be called "The Principle of the Local
Field in the Penumbra Region",

This principle consists in the following: - The transition
from light to shadow on the surface of the body takes place in
a narrow strip along the boundary of the geometrical shadow.

The width of this strip 1s of the order

2 A
de ™ R02 ’ (4)

where Ro is the radius of curvature of the normal section of

the body by the plane of incidence. .It-may be proved that,

(6)
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with neglect of small quantities of the order 5’ the
o

field in this strip has a local, character: 1t depends only

on the value of the field of the incident wave in the neighbor-
hood of the point considered, on the geometrical shape of the ‘ e
body near the point and on the elecfrical properties of the
material of the body. The field near a glven point on the
strip does not depend - its values at distant points and can
be calculated separately.

To establish the principle of the local field and to derive
explicit formulzs for this field we have used two different
methods. '

One of these (2) applies to the case of an absolute con-

PR

ductor ani gives the values of the fleld on its surface. We

start with the integral equation for the surface current density

J. This is of the form
_ex 1 nx [3'x(z - z)] | ds
J=2]"" + 3 { w5 SwiT (5)

iKR (6)

where
f = (1 - 1KR)e
The vector Jex (external current density) is defined by the
expression (3), where H is replaced by H®*, the magnetic
vector of the external fileld; z 1is the ra@ius vector of the
point of observation, z' that of the point of integration; i

R= |z - z', is the length of the chord between z and 2z';

(7)
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n 1s the value of the unit vector of the normal at z. A qualita-

tive study of tﬁe integral equation permits us to establish the
principle of the local field. This principle once established,
we have to find a solution of the diffraction problem for.a con-
vex body of a particular shape and to derive approximate formulas
for the field on 1its surface. In virtue of the principle of the
local field, these formulas hold for any other convex body having
at the point considered the same values of the principal radii of
curvature. (The particular body must of course be sufficiently
general to possess points with any prescribed values of principal
radil of curvature; actually a parabolold of revolution has been
used). Proceeding in this way we arrive at a general formula
for the surface values of the tangential components of the
magnetic field or, whilch amounts to the same, for the surface

current density vector. This formula is of the form

ex

3= 1% a(e, 0) (7)

where the argument € 1n G denotes the quantity

2
e=1 . I%R°2=l:d, (8)

4 being the distance fram the boundary of the geometrical shadow,
measured along the ray (i.e., along the line of intersection of
the plane of incidence with the surface of the body) and taken
positive in the directlion of the shadow and negative in the

opposite direction. The function G(€, 0) is defined by the integral’

(8)
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a(e, 0) =(¢;£§-)-:T%= ﬁ!{:%E;(E%E ’ (9)

where C 1s a contour in the complex t-plane running from

an

infinity to zero along the line arc t = and from zero

to infinity along the positive real axis.
The function w(t) may be called the complex Airy's °
function; 1t is defined by the differentlial equation

»"(t) = tw(t) (10)

and by the asymptotic behavior for large negative values
of t

bl

oft) me - ¥ (et V¥« exp [1% (.3)3/2]. (11)

The function G(€,0) tends to the 1limit G = 2 for large
negative values of €, while 1ts modulus decreases exponential%y
for large positive values of €. Formula (7) reproduces thus
the gradual decrease of the field amplitude when passing from
light to shadow.

.The same results may be obtalned by another methodu
which allows us to generallize them in two respects. Firstly,
the body need not be a perfect conductor, but may have a
finite conduc£1v1ty, if only the boundary conditigns (3) are
applicable. Secondly, the field is obtained not only on the
surface of the body, but also near the surface {at distances
that are small és compared with the radii of curvature). The

method consists in simplifying Hlxwell'l”equatigna and boundary

(9)

Fal
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conditions by neglecting quantities of the order of the square

of' the small parameters 1-\[T;-. and 1 : m, The wave equation
for the amplitude 1g thereby replaced by a bParabolic equation
of Schrodinger's type. The simplified equations are valig in
a limited reglon near a4 point on the penumbra strip,

The solution of these equations may be performed by meané
of the separation of variables and yields the fielg 1n the region
considered ang especially in the Penumbra 8trip on the body.
Introducing the complex quantity

3
im 1 wRO (1 2)

q=-.._..=_-—-...... ——
T oM A

(the modulus Iql 1s thus the quotient of the two small para-

meters), we may write instead of (7

J=3%* (e, q) , (13)
where
3 Jr let
ie 1 e dt
e W 2 e c WTTEY - am(ey 0 (1)

the contour ¢ being the same as in (g). These formulas glve
thus the distribution of currents on the penumbra 8trip on the -’

body and generalize oup Previous formulas (7) ang (9. The

formulas for the field near the surface are more complicategd

and will not be written here.




the field obtained by superposing the incident and the reflected

wave and using Fresnel's coefficients of reflection. On the
other hand, in the opposite portion of the strip the fleld is
practically zero. Thus our formulas constitute the mlssing e
1ink Jjoining the two regions where the laws of geometrical
optlcs may be applied. Together with Fresnel's formulas they
allow us to compute the field near and on the whole surface of
the diffracting body. s

In some problems this 1s all that is required. In the
problem of propagation of waves around the earth's surface,
for instance, we are only concerned with the field on heights
not exceeding ten kllometers--a quantity that 1s small as com-
pared with the earth's radius (6380km.). In this instance
our formulas, if modified so as to include the case when the
source is near or on the surface, give the required solution.

In other problems, however, the fleld at large distances
from the scattering body 1s needed. In splte of the fact that
our formulas are valld only in the region near the surface,
they provide 2 means to calculate the fileld at large distances
also. Indeed, the field of the scattered wave 1s generated
by the currents induced on the surface (in the skin-layer)
by the incident wave. These currents are given by our formulas.
Thus, by applying well-known theorems on’the vector potentlal
due to a given current distribution, we may, 1n principle,
calculate the fileld for arbiltrary distances from the reflect-

ing body.
(11)
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11. THE DISTRIBUTION OF CURRENTS INDUCED BY A PLANE WAVE
ON THE SURFACE OF A CONDUCTOR

V. Fock .

The distribution of currents, induced on the
surface of an perfectly conducting body by an incident
plane wave 1s considered. The body 1s supposed to be
convex and to have a continuously varying curvature.
The wave length A of the incident wave 1s supposed to
be small as compared with the dimensions of the body
and with the radii of curvature of 1ts surface. It
is shown-that the current distribution in the vicinity
of the geometrical shadow is expressible in terms of
an universal function G(€) (the same for all bodies),
depending on the argument £ =4/d, where £ 1s the
distance from the boundary of the geometrical snadow,
measured in the plane of incidence, and d 1s the width

3‘
of the penumbra region < - %r' Rg, Ro is-the radius of
i

curvature of the normal section of the body by the plane
of lncidence) . For the function G(&) an analytical
expression 1s derived and tables are computed.

Let us consider a perfectly conducting body on the surface
of which a plane electromagnetic wave 1s incident. The surface
of the conductor is supposed to be convex, with a continuously
varying curvature. The incident wave induces on the conductor
electrical currents, which in their turn become a source of the
scattered wave, If the current distribution on the conductor
is determined, then the calculation of the fileld of the scat-
tered wave may be performed by applying the well-known formulas
for the vector-potential. Hence the essential step in solving
the problem of diffraction of a plane wave by a perfect con-
ductor 1s to find the currents induced on 1its surface.

(1)
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_ The present paper is a preliminary report on our work
concerning the approximate solution of this problem,

1. Let us denote by J the surface current density on the
conductor., The vector J is defined for every point on the sur-
face and is directed along the tangent to the surface, It is
completely determined by 1ts two tangential components, the
third component (normal to the surface) being equal to zero.

It may be shown that the vector § satisfies the follow-
ing integral equation-

) = edex + 1 { n X Litx ;x‘ -‘r'l]_ f ) .dSI (1.01)
en ' R surf
with
f = (1- 1kR)eR | (1.02)

In this equation R 1s the length of the chord joining the two
points of the surface: the fixed point r(x,y,z), for which the
integral is evaluated, and the variable point r'(x!,y',z!'),
‘whose coordinates are functions of the 1ntegrat16n variables,

n is a unit vector of the normal to the surface at the point

r, d8' is the surface element at r! and k is the absolute value
of the wave vector. |

The quantity Jex is an "external" current density defined
by the formula

2% =% [newex ] | (.03

where H®* 1s the value of the magnetic field of the incident
wave on the surface ("external" field).

If the dependence of the external field upon the coordinates
is given by the factor

(2)
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eik(ax+ﬁy+yz) , (1.04)

then the current density may be sought in the form of a product
of a similar factor with a slowly varying furction of coordina-
tes. The integral (1.01) after dividing by (1.04) takes the

form

A

I= eik [R'*a(x"x)"'ﬁ(y"y)""Y(z"z) ¢as' , (1.05)

where ¢ 1s a slowly varying function. If the wave length 1is

sufficiently small as compared with the dimensions of the
body, the value of the Ilntegral will be approximately

p=ofl T Bl (1.06)

% cos 8

where the point x' y' z' 1s connected with the point x y 2 as

i it i1s shown in Figs. 1 and 2, and € 1s the angle of Iincidence
3 of the ray. *
.'
- ”
LY
Fig. 1 Fig. 2

The analytical connection between the points x' y' 2!

and x y z is given by the following formulas. Let n' denote

the unit vector of the normal at the point x' y' z' and let

(3)

KA P st -
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a + 2n;( cos 9=a" ,
B + 2n3'r cos =g, ¢ (1.07)
Y + 2né tos 6=+ ,
p
where
—_— . [ 1 !
cos 6 (cmx + ﬁny + ™) ) . (1.08)

The quantities a', B', ¥' are the direction cosines of the ray
reflected at the point x' y' zt,

With these notations, we have elther:

=7 (1.09)
R R R
or
S T =g 2oz o, (1.10)
R R R

the formulas (1.09) being valig,
8ltuated on the 1lluminateg part of the surface (Fig. 1)
while (1.10) are valid, if this point 1is situated on the

shadow part of the surface. 1In the latter case the "reflected"
ray is fictitious,

if the point x! y' 2! 1s

With the same degree of a

PProximation as in formula (1.06)
the integral equation (1,01) a

llows the following solution:

9= 25" on the 111uminateq part, (1.11)
J == 0 on the shadoy part.

Near the boundary of the g

eometr
r

ormula (1.06) ceases to be vali
not give a gradual transition r

ical shadow (where cos 6 &0),
d and expression (1.11) does
rom light to shadow.

(4)
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2. In order to obtain for the currents an expression

valid in the transition region also, it is necessary to use a

more exact solution. It is rether difficult to derive it

directly from the integral equation, but we have succeeded

to obtain it in an indirect way, on the basis of the follow-

{ng considerations. »*

First of all, it 1s seen from Flgs. 1 and 2 that if the
point x ¥y 2z lles near the geometrical boundary of the shadow,
the point x' y' z' 1lies also near this boundary and near the
point x y 2. Therefore, the value of the integral (1.01) 1is
determined by the values of the integrand in the ngeighborhood
of the point for which the integral is evaluated. Thus, in
the region of the penumbra (near the geometrical boundary of
the shadow) the field has a local character. Secondly, the
investigation of the integral equation (carried out under the
assumption that the chord can be repiaced by its projection
on the tangent plane) shows that the width of the penumbra
regicn is of the order of

o
]
W
>

2
o

RS , (2.01)
where Ro is the radius of curvature of the section of the body
surface by the plane of incidence. But in a region of width

d and in a certain more extended reglon the nucleus of the
integral equation depends essentially only on the curvature

of the surface in the neighborhood of a given point (i.e. on
the second but not on the higher derivatives of the surface
equation with respect to coordinates).

Hence it follows, that all bodies with a smoothly vary-
ing curvature have the same current distribution in the penumbra
region, if only the curvatures and the incident wave are the
same near the point under consideration.

(5)
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The results stated permit us to infer that, if we solve
the problem for any particular case, we can obtain universal
formulas for the fleld on the surface of a perfect conductor.
These formulas immedlately apply to the region of the penumbra,
but the field may be considered as known everywhere on the sur-

face, since for the 1lluminated region and for the remote shaded
region the expressions (1.11) are valid.

3. The derivation of these universal formulas is too
complicated to be gliven in any detailed form in a short paper.
We confine ourselves to some indications as to the method, and

to the statement of the result, which may be done in quite a
simple way.

i s AR | 205 T
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The considerations developed above show, that for the
derivation of the general formulas we can start from an exact
solution of the problem of diffraction of a plane wave by
some convex body with a smoothly varying curvature.

The sur- o
face of the body must, of course, be sufficiently general, i.e.

must possess polnts with given values of the principal radii
of curvature.

There are two cases in which exact solutions of the problem H
are known, namely, the case of a sphere and the case of a circu-~

lar cylinder (in the last case the incidence of the wave is
supposed to be ncrmal).,

These bodies are, however, not sufficiently
general: for a sphere the two radii of curvature are equal, and

for a cylinder one of the radii is infinite. The simplest of

the bodies having arbitrary values of the curvature radii are:
the ellipsoid and the paraboloid of revolution.

For these bodies
only the generai form of the solution of the scalar wave equation

is known; the complete solution of Maxwell's equation for the
given physical problem appears to be unknow».

i In our work we have obtained the required solution for the
i paraboloid of revolution (particularly the values of the tangential

(6)
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components of the magnetic field on 1ts surface)
this golution to derive the approximate formulas.

Let the equation of the paraboloid have the

x2 + y2 - 2az - a2 = 0 .

The components of the fleld of the incident wave

1Q

E = E, cos 5 e 5 Hx =0,
- = 10
- 1Q =

Ez-— - Eo sin 6 e 3 Hz 0,

where

Q =k (x sin 6 + z cos &) .

A

Fig. 3

If the parabolic coordinates:

kK (r + 2) ;
v=k (r - 2) ;

i
]

o X
¢ arc t; x

(7)
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and have used

(3.01)

(3.02)

(3.03)

(3.04)
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with

r = —Ixe +y2 4+ 2%, (3.05)

are introduzed, the equation of the paraboloid becomes

v =v, =ka . {3.06)

For the generalized (covariant) tangential components of
the external magnetlic fleld we have the expressions:

E
s1u Hex + HEX = o luu eiQ + 1¢ , (3.07)
u ¢ K

E ——
- 21iu Hix + H:x = -—i- _Juu giit = 19 (3.08)

In the new coordinates the expression for Q his the form

Q =-% (u - o) cos & + -qu sin 8 cos ¢ . (3.09)

For the same components of the total fleld expressions in form

of Fouriler series with respect to the angle ¢ are obtained.

The coefficlents of sin s¢ and cos s¢ in these serigs are

definite integrals with respect to the parameter t, involving i
some complicated functlions of u, v, 8, 8, t. These seriles ?
and integrals can be transformed into double integrals of
the form '

E, Juv ~1s¢+1t lgtg—g-
2lu H, + H¢ = —— g(s,t) e ds dt , t
2n k 8in &

. (3.10)
where the function g(s,t) is defined in the following way. Let

{ (v,s,t) be an integral of the differential equation

(8)




do dv 4 by 2

!

2
ug—%+9—g+<37-8—2-+3>l;=0 (3.11)

having at v-»mo an asymptotic expression

Al

i s+1 it )

- t-1 i -% + = i1 =

L(v,s,t)=c¢e 5 b v 2 e 2 P 1 -8 -1t |
20 5 2

1 +8 -1t 1 (3.12)
2 v

t

where F20 1s an asymptotic series of the form

Fag (d,s, %) =1+ 1,00 plEa)l o (513
N X
We put
mt-1 = 8 d <s§19 J (-S;E)
N(s,t)r-% e 2 A

2

(v,s,-t-1) + ¢ (s2+t2) Ce (v,8,-t+1)
(3.14)

4

where v is considered to be the quantity (3.06).
Then

1s T
g(s,t)=e °2 t (u,s+1,t) £ (v,s-1,t) (s-1t) N (s,t) . (3.15)

With g(s,t) having this value, the expression (3.10)
1s valid, if -m/2 < ¢ < n/2. In the cases m/2 < ¢ <
31/2 and -3nm/2 < ¢ < -m/2 we have to take for g(s,t) a

gsomewhat different expression. which we shall not

(9)
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write down here, The integration in (3.1C) with respect to the
variable t 1s to be made along the real axls from - oo to + oo
and with respect to & a”ong the imaginary axis from - 1 wto

+ 1 oo, The value of -21u H, + H is obtained from (3 10), if

we replace ¢ by -¢.

The double integral can be evaluated approximately under

.the assumption, that the value of v =ka is very large. Let us

introduce the quantity

oe _raslsin 6 cos ¢ - v cos & (3.16)
= . . 1
[20 (u+b)]41/3 (sin 6)2/3 C 2

Tt is easy to verify that on the geometrical boundary of the
shadow € =0; but in general ¢ will be large, of the order of

01/}; Therefore, when evaluating the integrals we shall con-
sider v to be very large and £ to be arbitrary (in general,
finite). It can be shown, that under these assumptions the
following approximate exp:essions for the integrals are valid

with a relative error of the order of o'l/}:

2lu H, + H = .]—_ 18+ g0 , (3.17)

- 2lu K, + H, -.- r 10 - 1 a(e) , (3.18)

|[ 1&1 ( i
w” (1) 3.19)
P

the symbol Pl denoting a contour running from infinity to the

where

3
&
13

a(g) = e

ofigin along the ray arc z=2/3 m and from the origin to infinity
along the ray arc z=0 (the positive real axis),

(10)
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The function w(t) whose derivative is involved in the
yntegrand has ‘been studied in our previous paper'm . w(T)

gatisfies the differential equation

'

w' ()= w (1), (3.20)
and can be written in the form of an integral "
1 12 - % z”
w(t) = e dz , (3.21)
J n
P2

where the contour denoted by P2 runs from infinity to the
origin along the arc z= - 2/3 m and from the origin to
infinity along the positive real axis.

Comparison of (3.17) and (3.18) with (3.07) and (3.08)
gives

Heg =Hi;‘ G (&) . (3.22)

Thus the tangential components of the total magnetic field
are equal to the tangential components of the external field
multiplied by a certain complex function of a single variable E.
A similar relation exists between the total and the "external”
current density, namely

J=3%a (¢) . (3.23)

Let us examine the geometrical meaning of the variable € in
more detail. Consider the section of the paraboloid surface
by the plane of incidence passing through the given point
o(Fig. 4). We denote by £ the distance of the given point from

* Journ, of Phys., 9:255, 1945,

(11)

B




Fig. 4

the geometriecal boundary of the shadow, considered positive in
the direction of the shadow and negative in the direction of the
light. The distance # is measured in the plane of incidence,
Let Ro be the radius of curvature of the surface section and

k = 2m/X the absolute value of the wave vector.

Then the quantity

3
k 2
€= ~—= =% (3.24)
2R d

[jwhere d 1s the width (2.01) of the penumbra region] is easily
Seen to coincide with the quantity (3.16) defined for a paraboloid
of revolution. Since we know beforehand that formulas (3.22) and
(3.23) are quite general, we conclude that they are valid for all
bodies with a given curvature, if € 1s given by (3.24),

(12)
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These formulas give the transition from the shadow to the

1ight. .
For large positive values of € the functlon G(€) is approxi-
mately equal to

G(¢) = ce1 <3 v SLU (3.25)

where a, b, ¢ are known numbers; namely

a=0,5094%; b=0.8823; c¢=1.8325, (3.26)

Oowing to the factor e P the function G(€) decreased rapidly.
This corresponds to the decrease of the amplitude in the shadow
region,

For large negative values of € the function G(¢) admits an
asymptotic expansion of the form

+

G(g) = 2 t—g + ... (3.27)

i
2¢
and tends to a 1limit which 1s equal to 2. This limiting value
corresponds to formulas (1.11) for the illuminated region. The
discontinuous function (1.11) is thus replaced in our more exact
solution by the continuous function (3.23). This enables us to
calculate the distribution of currents on the surface of a con-
ducting body with sufficient accuracy.

In the Appendix are given tables of the function G defined
by (3.19) and of the function g related to G by the equation

L X

G(x) =e 2 g(x) (3.28)

and expressible in form of the integral

(13)
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1 eixt

= dt . 5
i R (3.29)
1

The function G(x) is tabulated for values of x from x - 4.5 to
x =1 with interval 0.1, and the function g(x) is tabulated for a
range of values of x from x2 - 1 to x=4.5 with the same interval,
For values of x less than x=- 4,5 expression (3.27) may be used,
and for values of x greater than x=4,5 formula (3.25) becomes
applicable.

APPENDIX

i x’

Table of the function G(x)=e - g(x)

x Re G Im G | G ] | arc G
m ————
- 4.5 1.3998 -0.0055 1.9998 - 9'30"
- b4 1.9997 -0.0059 1.9997 - 10'10"
- 4.3 1.9997 -0.0063 1.9997 - 10'50"
- b2 1.9996 -0.0067 1.9997 - 11'40"
- 4,1 1.9996 -0.0073 1.9996 - 12'30"
- 4,0 1.9995 -0.0078 1.9995 - 13'20"
- 3.9 1.9994 -0.0084 1.9995 - 14130"
- 3.8 1.9994 -0.0090 1.9994 - 15130"
- 3.7 1.9992 -0.0098 1,9993 - 16'50"
- 3.6 1.9991 -0.0106 1.9991 - 18'10"
- 3.5 1.9990 | -0.0115 1.9990 - 19' 40"
- 3.4 1.999 -0.012 1.999 - 21!
- 3.3 1.999 -0.014 1.999 - 23!
(14)




s Re G Im G |al arc G
—
. 3.2 1.998 -0.015 1.998 - 26"
. 3.1 1.998 -0.016 ' 1.998 - 281
. 3.0 1.998 -0.018 1.998 - DL
- 2.9 1.997 -0.020 1.997 = 2 "
. 2.8 1.996 -0.022 ©1.996 - 37!
- 2.7 1.996 -0.024 1.996 - 41
- 2.6 1.995 -0.026 1.995 = 46!
- 2.5 1.993 -0.029 1.994 - 511
- 2.4 1.932 -0.033 1.992 - 561
- 2.3 1.990 -0.036 1.990 - 1%3
- 2.2 1.988 -0.040 1.988 - 190!
- 2.4 1.985 -0.045 1.985 - 1018
- 2.0 1.981 -C.050 1.982 - 1%27!
- 1.9 1.977 -0.056 1.977 - 1937!
- 1.8 1.971 -0.062 1.972 - 1947
- 1.7 1.965 -0.068 1.966 - 1958
- 1.6 1.956 -0.075 1.958 - 2011
-1.5 1.946 -0.082 1.948 - 2925¢
- 1.4 1.933 -0.090 1.936 - 290
-1.3 1.919 -0.098 1.921 - 209551
-1.2 1.901 -0.105 1.904 - 39310
= Ml 1.880 -0.113 1.884 - 3927
- 1.0 1.857 -0.119 1.861 - 3940
- 0.9 1.829 -0.123 1.833 - 39510
- 0.8 1.798 -0.126 1.802 - 4%¢0!
- 0.7 1.762 -0.126 1.766 - 4905
- 0.6 1.722 -0.122 1.726 - 4003
i - 0.5 1.678 -0.115 1.682 - 3054
! - 0.4 1.630 -0.103 1.633 - 3936 ,
‘ =WcHs 1.578 -0.086 1.580 - 3006 i
. 0.2 1.522 -0.063 1.523 - 2022
i - 0.1 1,462 -0.034 1.463 - 1921¢
(15)
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0%0:
. 1.333 0.040 [ 1,33y 1%y
0.2 1.263 0.086 | 1.266 3%51
0.3 1.189 0.137 | 1,197 6%35:
0.4 1311 0.193 | 1.128 9951
0.5 1.029 0.252. | 1,059 13%s5:
0.6 0.941 0.312 | 0.991 18%2.
0.7 0.846 0.373 | o0.924 23°%7:
0.8 0.74k4 0.432 | 0.860 30%08!
0.9 0.634 0.484 | 0,798 37%02:1
1.0 0.515 0.529 | 0,738 I 45°4 4
Table of the function g(x) = ¢ = 3 G(x)

: ’tx Re g Img 'g' . arc g
| = 4.8 1.794 0.495 | 1.861 15%26+
' - 0.9 1.805 , 0.320 [ 1.833 10°%4
| - 0.8 1.793 + 0.8 | 1,800 5%
' - 0.7 1.765 WU‘ZD 1.766 2%28
1 - 0.6 1.726 C.002 | 1.726 0°%0k 1
| 0.5 1.681 - 0.045 | 1,682 - 1%
- 0.4 1.632 - 0.068 | 1,633 - 2%
- 0.3 1.578 - 0.071 | 1.s80 - 2%g5:
- 0.2 1,522 - 0.059 | 1,523 - 2%3
- 0.1 1.462 - 0.034 | 1,463 - 1%op:
0 1.399 0 1.399 000"

{
(16)
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Re g Im g |g| arc g
e S RS |
1.333 0.040 | 1.334 1%3:
1.263 0.083 | 1.266 351
1.190 0.127 | 1.197 6°04 1
1.115 0.169 | 1.128 8%37+
1.038 0.209 | 1.059 11%21°
0.961 0.244 | 0.991 14°1 4
0.883 0.27% | 0.924 17°%141
0.806 0.299 | 0.860 20°19!
0.732 0.317 | 0.798 23%271
0.660 0.331 0.738 269381
0.591 0.339 | 0.682 29°50!
0.527 0.343 | 0.628 33°%02!
0.467 0.342 | 0.578 36°131
0.411 0.338 | 0.532 39°251
0.360 0.330 | 0.488 4203y
0.313 0.320 | 0.448 45%)21
0.270 0.309 0.410 48°481
0.232 2.960 | 0.376 51°53:
0.197 0.281 | 0.343 549561
0.167 0.267 | 0.315 57°59 !
0.140 0.252 | 0.289 61°00!
0.116 0.237 | o0.264 64°00!
0.095 0.222 | 0.2K2 66°581
0.076 0.208 | o0.z21 - 69956¢
0.0596 0.1926 | 0.2025 72%54 1
0.0453 0.1797 | 0.1853 75°511
0.0330 0.1664 | 0.1696 78°471
0.0224 0.1536 | 0.1552 81°4 31
0.0133 . 0.1414 | 0.1421 84°3g¢
- €.0055 0.1299 | 0.1300 87°%3y
- 0.0010 0.1190 | 0.1190 90°30!
- 0.0065 0.1088 | 0.1089 93°25!
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.0110
L0147
.0176
. 0199
.0216
.0229
.0237
.0242
.0244
.0243
. 0240
.0235
. 0228

OOOOOOOOOOOOO
OOOOOOOOOOOOO

96%20!
99°15!

102°%10"
105%05!
108%00"
110%s55¢
113%50!
1165
119%0°
122%35+
125%30¢
128%25 1
131°%0"
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111 DIFFRACTION OF RADIO WAVES ' AROUND THE EARTH'S SURFACE

V. Fock

The problem of the propagaticn of radio waves
around the homogeneous surface of the earth is inves-
tigated. The diffracticrn effects are considered but
the influence of the ionosphere is rieglected. The aim
of the paper is to derive formulas for the wave ampli-
tude as a function of the elevation of the source, its
distance from the point of observation (situated on
the surface of the earth), of the wave length and of
electrical properties of the soil. The main result is
the derivation of an expression for the attenuation
factor in form of an integral. This expression is
valid for all the values of parameters which are of
practical interest. 1In the limiting cases the well-
known formulas are obtalned: the Weyl—van der Pol
formula for illuminated region and the formula which
corresponds to the first term in Watson's series for
the shaded region (the latter in a slightly corrzcted
form). Essentially new is the investigation of the
region of the penumbra (near the 1liine of horizon).
Formulas are obtained which give a continuous transi-
tion from the illuminated region to the shaded one.
Methods for numerical calculations of sums and inte-
grals involved in the problem are elaborated.

INTRODUCTION *

There are many papers devoted to the problem of the dif-
fraction of ra@io waves around the surface of the earth. A
review of more recent investigations may be found in a paper
by B. Vvedensky.3

The interest in this problem is Jjustified by the fact,

that at small distances, of the order of a few hundreds of

*A shortlaccount of the resulty of this paper is given

in our note.

»t
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kilometres, the refraction of radio waves in the lonized layers
of the atmosphere may be neglected and the decisive role in the

propagation of radio waves 1s played 0y the diffraction.

blem of diffraction by the sphere had been already obtained
Some decades earlier, no Practically suitable approximate soluy-
tion has been proposed up to now. In this baper we intend to
£i11 up this gap.
1. STATEMENT OF THE PROBLEM AND ITS SOLUTION
IN THE FORM OF SERIES

We denote by r, 6, ¢ spherical coordinates with origin
at the center of the earth globe,

The equation of the earth's surface (consideredq as smcoth)

is r = a, where a 1s the radius of the earth. Let us Suppose

6 = 0 (where b>a), Suppressing the time-dependent factor -1t
in the fielq components, we can express these components by

means of the Hertg function U which depends on r and € only. De-
noting by k the absolute value of the wave vector we obtain for

the fielq in the ain:
E = 9 gsin @ :
r rsino 3% 946/

E, -%%(r%%); (1.01)




ghe other components being equal to zero.

Similar equations hold for the field in the earth.

The function U satisfieg for r > a the equation

AU + k°U = 0, {1.02)
and the radiation condition at infinity ”
oryU :)
lim (5= - 1kr U/ = 0. (1.03)
r-+ 00

If b > a, 1. e. if the source (dipole) is located over
the earth's surface and not on the surface itself, U must have

a singularity at the point r = b, 6 = 0, such that

1kR
: Us=%— +0; (1.04)

and U™ remains finite if XR -+ 0. In this formula

' i R= Vr2 4+ b2 - 2rb cos 6 (1.05)
is the distance {rom the dipole. On the earth's surfaae the
N Hertz function U has to satisfy the boundary conditions which
ensure the continuity of the tangential components Ee and H¢.
If wé denote the Herfy function within the earth by U,
these boundary conditions will have the form:
K% = k2 U; = (rv) = g% (rU,) forr = a. (1.06)
For 0 { r ¢ a (within the earth) the function U, has to

2
satisfy an equation similar to (1.02) and to remain finite.

The quantity k, in formula (1.06) and in subsequent

formulas is determined by the equation

k5 = ek® + 1 210 g (1.07)

(3)
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and by the conditicn‘Im(k') > d. It is uéeful ﬁo introduce
instead of the conductivity of. -the earth 6, a lehgth 3 which

characterizes the specific resistance of’ the earth. We put

beepme. o (Lo8)
For sea water the values of £ vary from 0.05 cm (very ealty
water) to 0.5 cm (dcarcely salby water) " For the soil 'this
length is hundrede:or thoqsande times greater. Introducing

the complex inductive capacity ‘of, the earth

n -‘-‘ ¢ + 4 ﬁ-’- | . ] o 0“09)
E we have ' o ' - S ,
| Ky k J L (a10)

The solution. of our problam 1n the form of series is well

known. We write. down the necessary formulas, without giving

their derivation

A {?§)"= VE Ty 05 |
. (1.11) i
: t (x>-1/ i ;(x). L |

where J (x) is the Bessel function ‘afd H(l)(x) is the 'Hankel

function of the firat kind These functions are: connected by ..

the relation

t

ux)c(x)-w(x\ux)-a.. e “(12)

we 1ntroduce a special notation for the logarithmic derivative

of the function wn(x)

Wm® =2 ()

T TR AU Sy o T o T G
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As seen from (1.01), the fleld on the earth's surface

may be expressed by the quantities

/
. _ 0
Ua U{r . al Ué o (rU)}r ey (1.1u)
For these quantitles the following serles in legendre

polynomials may be obtained:

(-]

1 § (2n + 1) ﬁn(kb) £ c e

U = - === cos :
kab k n 2
2 80 Lot 1 (ka) - k; % (p2) ¢, (ka)
(e o]
2n + 1) ¢ _(kb) x (k.a)

DR ( 1 D2 __r (c086). (1.16)

2" n=0 {!(ka) - kg X, (koa) € (ka) *

Our task 1s to perform an approximate summation of these

series.

2. TFE SUMMATION FORMULA

The sums we have to calculate are of the form

S =Zv¢(v)Pv_%(cos ), (2.01)

where the summation 1s taken over half integral values of v.
In -he sum (1.15) the function ¢(v)(disregarding a con-

stant factor) is equal to

¢,y (kb)
6(v) = - : (2.02)
§¢_%(ka) "k xv_%(kea) Cv_%(ka)

In the sum (1.16) this function differs from (2.02) by the

factor x, _, (),') :

(5)
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For the direct computation of the sum it would be necessary

to take the number of the terms approximately equal to 2ka, 1, e,
to double the number of the waves which may be put around the
earth circumference. Since this number is enormous, it is evi-
dent, that such a direct summation is impossible. For the cal-
culaivion of the sum S it is necessary to make use of the fact
that ¢(v) is an analytical function and to transform this sum
into an integral, which is to be evaluated by some approximate
method. Such a transformation was firstly proposed by W’atson2
in 1918 and was then used by various authors. But all these
authors aimed to bring the expression obtained by this trans-
formation to the form of a sum of residues, while our aim is
to separate out a main term which is easier to investigate and
to estimate the magnitude of the remainder. The method of com-
putation of the main term is not predetermined thereby.

When performing our transformation we have to bear in
mind the following general properties of the function ¢(v).
It is an analytical function of v meromorphic in the right
half-plane. It has poles only in the first quadrant and is
holomorphic in the fourth quadrant. It decreases at infinity
in such a way that all the integrals considered converge.

The Legendre functions that enter (2.01) can be expressed
by means of the function

-16
Gv * H_V—FM r (ﬁ: 4, v+, ﬁﬂ) (2.03)

(6)
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where F denotes the hypergeometrical function. Denoting by
¢t and by Pj i the expressions which are obtained from Gv and
v =t ¢

from P _1 = Pv %(cos 6) by replacing 6 by m - 6 we get:
-3 -

7 n
P = 1 [eive'iﬁ GX + e 1ve+iy GV] . (2.04)

1
v-2 s b2 sl 6

It is seen from (2.03) that if the values of v lie out-
side of a certaln sector, which includes the negative real
axis, and if Iv sin 6‘ is large, then the function G, (and

also G:) is approximately equal to
G, ~ V. (2.05)

Substituting (2.05) in (2.04) we get the well known
asymptotlc expression for P, _;. If we denote by B(v) the
-2

first term in formula (2.C4):

1 1ve-1T  »
B(v) = ————— ¢ T a (2.06)
n V2 sin 6 8,
the following relation may be proved
¥ - Ji(v-3)m
Pv-% e Pv_% + 21 cos vm B(v). (2.07)

We shall use this relation later on. We note that B(v)
is holomorphic in the right half-plane,

Let us consider in the plane of the complex variable v

three contours: 1) the loop C, which starts at infinity on the

positive real axls, runs above the real axis, encircles the

(7)

Fal
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origin counter-clockwise and returns to the starting point at

infinity running below the real axis; 2) the broken line 02’

which contains the first quadrant and is described (in its
horizontal part drawn slightly over the real axis) from the

left to the right side; 3) the straight line C, which crosses

2
the origin and 1s inclined at a small angle to the imaginary

axis. This line is described from the top to the bottom and
lies in the second and fourth quadrants.

We can write the sum S in the form

S = %-‘j‘v¢(v) sec v P:;% dv, (2.08)
e

since the integral on the right-hand side reduces to the sum

of the residues in the points v = n + 3. The function ¢(v)

being hclomorphic in the fourth quadrant, we may replace the

contour C1 by the contours C, and C, and write

2 3

[4)]
"

!
o] b

v[ vo(v) sec vm P: 1 dv +
-2

Co

(2.09)
+ %- vo(v) sec vm P:_% dv.

Q
N

This transformation of the sum corresponds to the usual

one; the integral along the contour C3 is neglected because of

the smallness of the odd part of ¢(v) (an estimate of its magni-

tude will be given below), and the integral along 02 is reduced

(8)
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to the sum of residues. But we shall go a step further and
divide the integral along 02 into two parts: the maln term
and the correction term. Inserting in the integral the ex-

pression (2.07) for P:_% we shall have

(2.10) *“°

S = S, + 82 + SB’
where
Sy = S vo(v) B(v) dv, (2.11)
C
S, = - 3 S ve(v) sec vm g Pv-% dv (2.12)
Ca
S3 = % S vo(v) sec vn P:‘_% dv. (2.13)
Cs

The integrand in S, has no poles on the real axis (and

1

also in the fourth quadrant). Therefore, there 1s no difference,
whether we evaluate the integral S1 along 02 or along 03- We
have denoted by C any contour, which 1s equivalent to 02 or 03'

The representation of S as a sum of three integrals (2.10)
is exact—there was made no neglection in our derivation. But
the estimation of the magnitude of 52 and 53 shows that these
integrals are negligibly small as compared to Sl’

In fact, 1f we evaluate the 1ntegral 82 as a sum of resi-
dues at the poles of ¢(v) we shall see that its ratio to S, is

of the order

;
|
%
3
%

(9)




e21v1 (n-e)’ (2.14)

where Vi is the pole of ¢(v) nearest to the real axis. The
imaginary part of vy 1s positive and for large values of ka

wWill be

where ¢ ig g pure number of the order of unity (for the per-
fect conductop ¢ = 0.70). Since ka is very large,of the order
of a million (for ) = 40 m, ka = 106), 1t 1s clear, that the
Quantity (2.15) will be large (for instance, equal to 70) and
the quantity (2.14) will be negligibly small, (In our problem
® cannot reach the value 7 since in this case we have to take
into account the influence of ionized layers of the atmosphere
and our formulas cease to be valid.)

The value of the integral S3 is determined by the odd
part of ¢(v). But the odd part of this function will be of

the order
,eEikEal . (2.16)

Since the imaginary part of k2a is a positive and very large,
the value of (2.16) will be inconceivably sSmall.

The following physical picture gives a notion of the
Smallness of the integrails 82 and S)' The integral 82 is the

around the glope without refraction (by means of diffraction

cnly). The integral Sé is the amplitude of g wave which

(10)
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;raversed a path equal to the diameter of the globe with the
absorption which takes place within the earth. It 1is clear
that both the integrals are nefgligibly small as compared with
the amplitude of the wave which reached the observer through
the air by the nearest way.

Therefore with the whole permissible accuracy (i.e. with
an error which is negligibly small as compared with the errors
involved in the position of our physical problem) thc .um S
defined by (2.01) may be put equal to the integral S, alone.

This integral may be written in the form
e-i(ﬂ/4)

1 n Y2 sin 6
C

S vo(v) e1ve G:'dv, (2.17)
which follows from (2.11) when the expression (2.06) for B(v)

is inserted.

3. THE EVALUATION OF THE HERIZ FUNCTION
FOR THE ILLUMINATED REGION

If ¢(v) i1s the function (2.02), then the relation between

the sum S and the quantity Ua is

= 2
Ua ® = 7ab S. (3.01)

Therefore, our approximate expression for Ua may be

written
140 _
ce ive #
U = vo(v) e G dv. (3.02)
2 'nkab'stinGS ¥
C

(11)
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Kk ab sin @
o] c > >
1/a + b® - 2ap cos b

from the earth's center on the ray (1. €+ On the straight 1ine

which connectg the source ang the point or observation).

path., Since Yo and voe are large as compared with unity, we

may put according to (2.05)

ﬁv-% (p) = : ei(é-”£ (3.05)
U1 - (432
Where
2
: f Vi- 2 g (3.06)
P
v

'p‘? - v2| > ph/> (3.07)
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4s satisfled. As to the function xv_é(kaa) its value near

the point v = v  may be represented with a sufficlient approxi-

pation by the expression

2
et ) = - 140 - (3.08

’

In order to make clear, in which cases the inequality

(3.07) 1is satisfied, let us introduce the parameter

p -(%3)1/3 cos v, (3.09)

where <y is the angle between the verticali directlon at the
observation point and the direction from this point to the
source.

It is easily seen that for v = Vor P F ka the inequality
(3.07) 1s equivalent to the condition that p should be large
and pcsitive. Such values of p correspond to the illuminated
region. The values of p of the order of.unity (positive and
negative ones) correspond to the region of penumbra: the
special value p = 0 gives the boundary of the geometrical
shadow (horizon line). Large and negative values of p corres-
pond to the shadow region.

In this section we shall investigate the case of a large
positive p (illuminated region); other cases will be investiga-
ted in the next sections.

We have seen thait if p » 1 the Debye expressiodg for the

Hankel functions are valid. Inserting these expressions into

(13)
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(3.02) ang using (3.04) ang (3.08) we get

" ‘h—
2e

T b (4/ia? - 02
U z_‘-‘-—-—-—-_...._______ — 8
® kabA2msing ¥ 2 j k2p2 2
¢

\ (3.10) i
. eim‘/_v—dv ,

vzﬁ- k va %
1l - _§‘§'+."-\/1 ) i
W/ k™a ka kga

where k -
w = j;1f 1. 35 dp + veé, (3.11)
P
ka

If the cond;tion

!

kh cos v » 3 (3.12)

In this formuls

R=4Wa2%, 2 _ 2ab cos @ (3.14)

is the distance from the Source, and w ig the "attenuation

function" which in oyp case 1s equal to

W . = —. (3.15)
1+ f; 1l - fg 8in® v . gee Y
2
(1%)




The quantity U! defined by the series (1.16) differs

(4n our approximation) from U, by a constant factor only.

4

we have
2 2
Ul = - -i-kk-g—a '\/1 E % sin® v U,. (3.16)

The last formula is true not only for the illuminated
region, but also in other cases.

If condition (3.12) is not satisfied, the denominator
in the integrand (3.10) cannot be considered as slowly vary-

ing. If instead of (3.12) we suppose that the conditions:

2
1« % < (xa)?/3, (3.17)
l « kR « a/h, (3.18)

are satisfied (the inequality p » 1, being a consequence of
these conditions), the integral (3.10) can be approximately
calculated by introducing a new integration varilable pu,

according to

Y (3.19)

For the function W in (3.13) the following approximate

expression is obtained:

Y e L L
WoE e %—V%%&Se 2 ° ——“—(P7——)-u+dkk2 , (3.20)

r

(15)
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where

u, = h/R (3.21)

is the inclination of the ray to the horizon. The contour T

is a straight line which crosses the point u = Ko passing there
from the fourth to the second quadrant of the plane of p (or of
o= K to be more exact). The integral (3.20) can be calculated
without any further approximation and gives the well-known

Weyl— van der Pol formula.

If we put
T %, [k 17 1/
. L,\/ER; - o T hy/kr
6 = e ks 5 T =e g% 3, (3.22)
we shall have
6+T
2 2
W= 2 - 4ge(0+T) gea da. (3.23)
i

To obtain the fleld components from our expressions for
Ua and Ué we have to differentiate these expressions by 8 which
is easily done, since we may regard all factors in (3.13) ex-

cept eikR, as constants.

4. ASYMPTOTIC EXPRESSIONS FOR THE HANKEL FUNCTIONS

In the following we have to consider the case when the
point of observation is in the region of penumbra.
This case 1s characterized by the values of the parameter

P (positives or negatives) of the order unity. As the inequality

\ (16)
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(}.01) is not satisfied in this case, the Nebye expressions
(2.05) for the Hankel functions are not valid on the main part
of the integration contour and must be replaced by some others,
The new expressions for the Hankel functions suitable for our
purpose can be obtained from the asymptotic expressions which | s
are given in our previous paperj, or from the formulas given
in the well-known Watson's treatiseu, but it is more simple to
deduce them independently.

Our aim is to find an approximate expression for the

Hankel function in terms of the function w(t), defined by

the integral

w(t) =-i%§‘getz'l/323 dz, (4.01)

I

the contour I running from infinity to the origin along the

ray arc < - 2n/3 and from the origin to infinity along the

0 (the positive real axis). The function w(t)

ray arc 2z

satisfiles the differential equation
w"(t) = tw(t) (4.02)

with the initial conditions:

w(0) = 2/%” e1(1/8) = 1 0899290710 + 10.6292708425,
3 I (2/3)

W (0) = AT 7H/0) L o 79u5704238 - 10.4587454481.
34/2 1 (4/3) o3

(17)
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w(t) is an integral transcendental function, which can be ex-

panded into a power series of the form:

i { £ t6 £2
w(t) = w(0) 31+ g—“ (25)(3-6) * 12.5-:8)(3-6:9)" }+
4 7 10
! t t t
+ W (O){t + 3-F+ (3 6)_()4 77 (3.6.9)()4.7.10) i OF } '

(4.04)
If we separate in w(t) the real and the imaginary parts

(for real values of t) putting
w(t) = u(t) + 1v(t), (4.05)
then u(t) and v(t) will‘be two iadependent integrals of equa-
tion (4.02) connected by the relation
u'(t) v(t) - u(t) v'(t) = 1. (4.06)

The asymptotic expressions of these functions for large
negative values of t are obtained by separation of the real

and ilmaginary parts in the formulas:

3/2
iI"<t>'1/“ () , (4.07)

w(t)

12(-1)%/2

i (-t)2/% ¢ . (4.08)

wi'(t) = e

For large positive values of t the asymptotic expressions

for u{t), v(t) and their derivatives are of the form

. 2,.3/2 2,3/2
w(t) = ¢S wie) =4 e (ho9)

(18)
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2 ,3/2
et
v(t) =%t'l/“ e °

2 .3/2
AL
vi(t) = - %'tl/u e 2 (4.10)

From the series (4.04) the following relations are easily »°

deduced: 5 m
syl 1
w(te 2) = 2e © v(-t), (4.11)
2n T
w(te 3) = e 3 [u(t) - ()] . (4.12)

These relations describe the behavior. of w(t) in the complex
t-plane.
We note that w(t) is expressible 1n terms of the Hankel

function of the order 1/3 zccording to the formula

2n
w(t) =:\/_1’3‘-‘e13 (-t)1/2 H{}%(% (-t)3/2>. (4.13)

After having enumerated the maln properties of w(t), we
now proceed to deduce the asymptotic expression for the Hankel
function Hsl)(p) where v and p are large and nearly equal, so
that the ratilo

Y - P - t (h.ll&)
R[p/2

remains bounded, while p tends to infinity.
The Hankel function Hsl)(p) admits the integral represen-

tation

(19)
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Re(vo) <0 [e. 8. v, = (- ﬂ/N/§3 - in], a straight 1line Join-
ing Vo to the origin and, finally, the positive real axis des-
crited from the origin to infinity.

Let us express v through t, according to (4.14), ang

introduce 3 new integration variable

2 = ‘ap/2-v- (4.16)

Considering t and z as finite and P as large, we can ex-
Pand the intergrand 1n (4.15) 1in g serles of negative (frac-
tional) Powers of P. Since the relevant part of the trans-

formeg contour ¢ colncides with contoupr I' we can write

GRS ORI ES R e
g (4.17)

and evaluate the integral using (4.01). we thus obtain

-1/3 2/3
Hél)(p) = - V-—%(%) {w(t) - 616(5') w(5)(t)-+ }

derivative equals

w®) gy = 2 .. (t) + btw(t). (4.19)

(20)
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Inserting this in (4.18) and using (1.11) we get the
following expression for the function Cv-l/z(p):

!

;v-1/2(p):--(g-)l/G{w(t)—é%(g-)'2/3 [tzw'(t)+utw(tﬂ+...} . (4.20)

3
Differentiating this expression with respect to p (with
account of the dependence of t on p with v constant) we get

the following expression for the derivative:

t}-1/2(p)= 1(%)-1/5{‘.'&)—55 (8)2/Gerorw (5)-4ents)] +...}.(u.el)

These expressions wlll be used in the next section.
§ 5. The expressions of the Herz function valid in the
penumbra region.
We rewrite the expression (3.02) for the Herz function
replacing therein the quantity G; by 1ts approximate value
n/v and the quantity sin 6 before the integral by 6.

We get
P 2e S ivo
U = ¢(v)e ¥V v, (5.01)
&  kab y2m0 &

The contour C may be taken identical with contour C2,
which was defined:h1§2, or may be replaced by some contour
equivalent to CE‘ The main part of the integration path lles

in our case (i1.e. for finite values of the parameter p) near

(21)
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the point v = ka, Consequently, the function xv_%(kaa) involveq
in (2.02) can be replaced by the value of (3.08) for v = ka.
Introducing this in ¢(v) we obtain:

(5.02)

For Cv_% and its derivative we must use expressions valid

near the point v = ka. Such expressions were obtained in the

preceeding paragraph. Rétaining in (4.20) and. (4.21) the prin-

cipal terms only we get:

)

| 1/6 .
: Cv_%(ka) . - 1(?) 4 w(t), (5.03)
-1/6 :
Cy-y(ka) = 1(%a£ / w'(t), (5.04)

where the variable t 1ls connected with v by the relation

\

v = ka +(%a_)1/3 . | (5.05)

The numerator in (5.02) 1is obtained from (5.03) by replacing

: aby band t by t', where

S /s
Vo= kb +_(-_‘§-b- /_ £, (5.06)

Equating (5.05),and (5.06) we obtajin the connection between t

and t'. Since the ratio h/a, where h = b - a, is small {we :

shall consider it of =he same order as (ka)'2/3j we must neg-

lect it as. compared to unity. We may then put

» | , (22)




t' =t -y,

where

(ka/2)1/3

(5.07)

(5.08)

is a quantity proportional to the height of the source over

the earth's surface. We may call y the reduced height of the

source. Hence, with neglect of terms of the order h/a or

(ka)'g/3 we have:

1/6
¢,_300) = - 1 ()" w(e - ),

where t is determined by (5.05). (We have also replaced b by

a in the factor before w.)

Substitution of (5.03), (5.04) and (5.09) in (5.02) gives

the desired approximate expression for ¢(v).

If we put for the sake of brevity

e k g 2
2 k2

we obtain

1/3 _
VIS (]’(2'@') g

Remembering formulas (1.09) and (1.10), we may write for

the quantity q

1/3 T e A/ent)
o j’<}¥i) Ee + i(A/QﬂE)ﬂ

(23)

(5.09)

(5.10)

(5.11)

(5.12)

P
i
' bace
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or with the same accuracy

.1 (maY/? 1
a=1(3 ANe+ 1+ 1(a/2nh) D

This form is slightly more convenient for calculations.

We have now to substitute the value of ¢(v) from (5.11)
into (5.01) and introduce the integration variable t. Making
this substitution, we may replace the quantity Vr:‘in the inte-
grand by the constant value \[;;-and also write b instead at
a in the factor before the integral. The resulting formula may

be written in the form:

tkas -1T (’
_ e 4 [x ixt _ w(t - y)
Va""e ¢ N7l w(e)y - awrey & (5.14)

t/

C

where x denotes the quantity
1/3
k
x =(12) "%, (5.15)

which may be termed as the reduced horizontal distance from
the source, while y and q have the values given by (5.08) and
(5.13). The contour C must be such that all the poles of the
integrand are comprised within the contour; as we shall see
later, they are all situated in the first quadrant of the t
plane. Thus we can carry out the integration in (5.14) from
imto 0 and from 0 to + m
In order to get a more clear idea on the ratio of the

horizontal and the vertical scale in the variables x and y,
we write the expression for the parameter p, as defined by

(24)
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(3.07), in terms of x and y. From the conslderation of the
triangle with vertices in the eérth's center, in the source

¢
point and in the point of observation, the following approxi-

mate expression 1s easlly deduced:

1/3 “o L o2
D =<l£_a cos y = Lﬁ_——x 5 . (5.16)

It follows that the equation of the horizon line is
x = \[;: Further we shall need the relation between the dis-
tance R from the source as measured along a stralght line and
the horizontal distance af as measured along the arc of a
greﬁf circle. Assuming aé >> h, 1. e. (ka)l/3 X >> y, this

relation may be written

kR = kab + @, (5.17)
where
2 3
= Xy _ X2
%o %§'+ 2 1z (5.18)

6. DISCUSSION OF THE EXPRESSION FOR THE HERIZ FUNCTION

The expression obtained for the Hertz function 1s most

convenlently written in the form:

eikae
Ua = —E_—V (x,y,q), (6'01)
where
'ig x | eixt w(t - y)
V(x,y,q) = e q/ A EETIORaR (6.02)
C
(25)
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The quantity V may be called attenuation factor by analogy with
the quantity W, which was introduced earlier [see (3.13)]. Let
us determine the connection between V and W. Since in the de-
nominators of expressions (3.13) and (6.01) the quantities R

and af can be considered as equal, it follows from (5.17)
w = ve lto, (6.63)

We have now to investigate the expression (6.02) for V.
We shall first consider the case of large positive values of
p(illuminated region). This case has been already discussed
by another methcd (§ 3). But, as formula (6.02) w23 obtained
for the case of a finite p, 1t seems to be of iInterest to ver-
ify that it 13 also valld in the case of a large p. If p > 1,
the integration path may be deformed so as to cross the point
where W/_:E-- p. Its main part will be situated in the domain
of large negative values of t, where expressions (4.07) and
(4.08) icr w and w' are applicable, Using them and applying

the method of the steepest descent, we obtain

- dw 2 .
Vs e 3757 ¢ (6.04)
and in virtue of (0.03)
_ 2

The latter expression practically coincides with (2.15),
We note that in the case when x is ol the order of unicy or

large the condition p >> 1 is sufficient for the applicability

(26)
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of the method of steepest descent. If x 1s &mall, the further
condition y2 >> 2x is rnecessary. If the latter condition 1is

not satisfied but the irequality

X <Ky << 1/x (6.06) *

18 satisfied instead, the integral can be calculated by another
method. Further simplificaticns in the asymptotic expression

for w(t - y) can be then made, ard the integral (6.02) reduces

1-— 'g 1, t+iy t (6.07)
'\/ dt. .07
\/ -1q ’

Taking V-t as integration variable, we are led to an

to the form

integral of the form (3.20) [with -t = (ka/2)1/3 M] and we
get again the Weyl-van der Pol formula (3.23) with the follow-

ing values of 6 and 7T:

gy I
T _ .
6 = aVx, 71=e —=F ), (6.08)
2V x

These values practically coincide with (3.22).

[N

Let us now investigate the most interesting case when p
is of the order of unity (positive or negative). We know that
this is the region of the penumbra, where the diffraction
ef'fects play che dominant part.

If the values of x and y are of the order of unity, the

most effective method of evaluation of the integral (6.02) is

the representation of this integral in form of a sum of residues

(27)
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’ we obtain

to n/3, so that

1
; ty = |t le ™2, ¢

\N| =

taken at the poles of the integrand,

Denoting by ty = ts(q) the roots of the equation

w'(t) - qw(t) = 0

1 I zi: 1xtg w(t

—
ts -q

S

= ,to 'e 3.

For the value Q@ = 0 they reduce to the roots t'

13

We give here the moduli of the first five roots

w(ts)

IR

| ]
e 2

|
P

(28)

‘: .h‘-.

T T R e ey e LT O

Jd
u

' (o]
s t ts
i 1 1.01879 2.33811
i 2 3.24820 4,08795
% 3 4.82010 5.52056
y 6.16331 6.78671
5 7.37218 7.99417
l

For large values of 8 we have approximately

% (e - 1?)]2/3’

]2/3
7]

(6.0¢)

(6.10)

The roots t (q) are functions of the complex parameter q.

tS(O) of the

derivative w'(t) and for @ = 00 they reduce to the roots tg

ts(aj of the function w(t). The phases of t! and tg are equal

(6.11)

o)
E and ts

(6.12)
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To calculate the roots for finite values of g we may use

the differential equation

S -
dq -~ t - q2, (6.13) y

which can be easily derived from (4.02). The root ts(q) is
determined either as that solution of (6.13) which at @ = 0
reduces to té or as that solution which at q = @ reduces to
tg. Both definitions are equivalent. Ste.'ting from the first
definition, a series 1n ascending powers of q may be easily
constructed for ts; this series will converge for |q‘ <|VGZ:L
Starting from the second definition we may construct a series
in descending (negative) powers of q; this will converge for
‘ql >‘\/€;w. These series shall not be wrltten down here.
It may be noticed that the value of t, which for large values
of Iq‘ is close to q2, is not a root of equation (6.09).

If the condition y2 << 2'\/2;.|is satisfied, we have the

approximate relation
wit, - vy) ===
S ol
= ch(y'\/t ) - —2= sh(yy t.). (6.14)
wltS) s ,\/ts \/ s

This relation permits us to estimate the value of remote

terms in the series (6.10). If s is so large that Iq |<<|@[€;I.

we have approximately t = tg (0) = tl. It follows from this

and from expression (6.1l) that the series (6.10) is always

(29)
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convergent. But if x 1s small or if y 1s large, the series
converges slowly, and to calculate its sum a large number of
terms may be required.

In the shadow region, where p 1s large and negative, the
series (6.10) converges very rapidly and its sum approximately
reduces to its first term.

Our series (6.10) corresponds to that of Watson but has
the advantage of simplicity.

The fundamental formula (6.02) permits us to investigate

) not only the limiting cases (large positive values of p-illumi-

! nated region, large negative values of p-shadow region) but
also the intermediate cases, namely the region of the penumbra.
While in the 1imlting cases our formula leads to an improvement
of formulas previously known (the reflection formula and the
Weyl-van der Pol formula for the illuminated region and the
Watson series for the shadow region), in the transitional
penumbra region .t yields essentially new results.

The case when x and y are large and p-finite (short waves,
penumbra) is of special interest. This case has not been in-

vestigated before as the known formulas are not valid here.

In what follows we shall derive approximate formulas, which
allow a complete discussion of this case.

We iantrodvce the quantity

z =x -4y, (6.15)

‘ (30)
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which represents the reduced distance measured from the boun-
dgary of the geometrical shadov (and not from the source). In !
the region of geometrical shadow we have z > 0, in the visible

region z < 0. Our parameter p, expressed in terms of z and x,

Y

takes the form

2
=4 - X = )
p 2x = =R

N

|

(6.16)

Lt

In our case X is large an 2z 1s finite; hence we have approxi-
mately p = - 2.

The main part of the integration path in (6.02) corres-
ponds now to values of t of the order of unity; but if y 1s
large and t finite we may use for w(t-y) the asymptotic ex-
pression (4.07) which gives

T 2/, _12/2
w(t - y) = e (y - t)" /% 3 (6.17)

or approximately

1 -1/ 1% y3/2_ 4 Ayt (6.18)
w(it -y) =e 'y e

Inserting (6.18) into (6.02) and replacing in the factor

& =
before the integral the quantity x2 y % by unity, we get

12 372
V(x,y,9) e vylx -\ v,a), (6.19)
where
: 1 eizt
\Il(zsq) - ﬂ wq(t‘) = qﬂty dto (6.20)
C
(31)
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The terms neglected in (6.19) are (for a finite z) of the
order of 1/4/_;-(or of 1/%).

Therefore, the function V(x,y,q) of two arguments X,y and
of the parameter q reduces in our case to a function Vl(z,q)
of a single argument z and of the same parameter q. The re-
sulting simplification is quite essential.

Let us now defﬁve the relation connecting the attenuation

function W with the function V,. We have the identity

1
)
29320 v 347 &, (6.21)

where w_ has the value (5.18). Omitting in (6.21) the 1last

term we obtain from (6.03) and (6.19)
1.3
32 :
W=e Vl(z,q). (6.22)

Thus, in our approximation function W depends on x and y
only through z = x -\/—51

The function Vl(z,q) is an integral transcendental func-
tion of the varlable 2., For a positive z we can evaluate the

integral (6.20) as a sum of res’dves, and we get

a
izt
Vi(z,q) =12V a Z e (6.23)
(t
s=1 8

2
- q7) w(ty)
(for z > 0),
where t  are the roots of equation (€.09) which were discussed

earlier. The larger is z the more rapidly converges the series

(6.23). For a sufficiently large positive z its sum reduces to

(32)
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the first term. For finite negative values of z(e.g. - 2 < z
¢ 0) the integral (6.20) has to be evaluated by quadratures,
For large negative values of z thils integral may be

evaluated by the method of steepest descent, and we get

»*

ge-(i/b)z'3
Vl(Z,Q) = T+ (fa/z) ° (6.24)
According to (6.22), this gives
WS 2/(1 + %) (6.25)
Since approximately 2 = - p, this coincldes with expres-

sion (6.05).

We note in conclusion that our fundamental formula (6.02)
can be obtained by the method of parabolic equation, proposed
by M. Leontovich and applied by him5 to the derivaticn of the
Weyl-van der Pol formula. The application of Leontovich's
method (in a slightly improved form) to our problem will be

given in a separate paper.
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SOLUTION OF THE PROBLEM OF PROPAGATION OF ELECTROMAGNETIC WAVES
ALONG THE EARTH'S SURFACE BY THE METHOD OF PARABOLIC EQUATION

M. Leontovich
and
V. Fock

The problem of propagation of electromagnetic
waves along the surface of the earth is solved by
the method of parabolic equation proposed by Leon-
tovich, In the first section the surface of the
earth 1s considered as plane and the well-known
Weyl-van der Pol formula 1s deduced. This formula
turns out to be the exact solution of the parabolic
equation with corresponding boundary conditions.

In the second section the surface is consldered as
spherical, and the resulting formula coincides with
that obtained by Fock by the method of summation of
infinite series representing the rigorous solution
of the problem,.

A new form of the solution of the problem of propagation
of electromagnetic waves from a vertical elementary dipole
situated at a given height above the spherical surface of the
earth was given in a paper by Fock(l’2 *; In this solution
the field is calculated for points on the surface of the earth,
but according to the reciprocity theorem the same soluticn
gives directly the field at any point above the surface 1if the
dipole 1s located on the surface itself., 1In the present paper
it is shown that Fock's solution can also be obtaired by
another method, namely by reducing the problem to an equation
of parabolic type for the "attenuation function".

*In the sequel these papers will be referred as I.
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The method of parabolic equation was proposed by Leontovieh
and applied by him to the solution of the same problem for the k
case of a plane earth, Since the considerations of the origina} !
paper by Leontovich (3)*" need some modifications, we shall give%
in what follows a new exposition of the method, applying it ;
firstly to the case of a plane earth and considering then the
case of a spherical earth.

i

1, THE CASE OF A PLANE EARTH

We assume the time-dependence of all the field components
to be of the form e-iwt. In the following this factor shall be
omitted.

Let us denote by k the absolute value of the wave vector

and by n the complex inductive caracity of the earth:

_ 2, 4m6 o
k-T’n‘€+iT =€+m- 3 (1.01)

i The quantity
c

) = T8 (1.02)

having the dimensions of a length characterizes the specific
resistance of the earth (this length varies from some tenths
of a centimeter for sea water to ten and more meters for dry
soill). Let U be the vertical component of the Hertz vector
(the Hertz function). This function satisfies the equation

AU + K°U =0 . (1.03)
We shall write the Hertz function in the form

%R i

Ut—e—-ﬁ- W, (1.04)

E ##%#This pap ~ will be referred in the sequel as II.

R (2)
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where R 1s the distance from the polnt of observation to the
gource and the factor W is the so-called "attenuation function".
ps it is known, for kR-0 the Hertz function tends to infinity
{n such a way that W takes a finite value. We normalize W in
such a manner that this value shall be equal to unity (it being
supposed that both the source and the observation point remain
above the surface of the earth).

In the following we assume, however, that the source is
jocated on the earth's surface. Let us introduce cylindrical
coordinates r, z with the origin in the dipole and the z axis
drawn vertically upwards. On the earth's surface we have z=0,
The distance R will be R= Jr2 + 22 . The principal "large
parameter" of our problem is the quantity 'n '. For large |n|
the attenuation function W is a slowly varying function of
coordinates. 1In order to characterize the slowness of its
variation it is useful to introduce the dimensionless coordinates .

kz -

Kr ; El=
2| J 1l

and to consider W as a function of p and {. The derivatives
of W with respect to its arguments will be then of the same
order of magnitude as the function W itself,.

Substitution of (1.04) into equation (1.03) gives for
the function W(p,{) an equation, which can be simplified if
one supposes that the inclination angle of the ray to the
horizon is small and that the distance from the source is at
least equal to several wave lengths. These assumptions yield

the inequalities:

p= (1.05)

Z«w1m»L, (1.06)

which are equivalent to

& . 1
3« edinl 5 e » T (1.07)

(3)
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Since |n| 1s assumed to be large, the inequalities (1.07) hoigq
in a wide range of the values of p and ¢ (and in any case for
values of p and { of the order of unity), If the inequalitieg
(1.07) are valld, the equation for W(p,L) assumes the form

2
1¥+1-1+£§E=0.
(-]4 p p?d
The terms omitted in (1.08) are of the order of l/ln, as
compared with those retained,

The boundary condition for W on the earth's surface is
obtained from the condition for the.Hertz vector

)

(1.08)

U _ — K (for z =0) (1.09)
oz ln
given by Leontovich. Tt has the form
oW uW =0 (for ¢=o0) (1.10)
L
where
m-6
q =1 [l 1 Z2 (1.11)
n : :
and 6 1s the 8o-called loss angle, defined by
) ™ "
6 = arc tgm—e—, 0(5(-2' (l._lE)

CisO(p(w, 0< < @,

As a "condition at infinity" we Mmay require that for all
positive values of p and { [:with the possibile exception of
the singular point p =0 of equation (1.08) J the function w
should be bounded Or such that the Hertz vector U 1s bounded,

(4)
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We now proceed to the formulation of the condition for
p=0. Since thls is a point of some delicacy, we shall discuss
gt in a more detalled way.

We must state, firstly, that in the reglion close to the
gource, 1.e., for small values of kR, the inequalities (1.07)
cease to be satisfled; the differential equation (1.08) and the »*
expression for W to be deduced from it become invalid. The
reglon of small kR 1s a "forbidden zone" for our approximate
runction W, Therefore, the character of the singularity of the
exact Hertz function cannot be used for the purpose of obtain-
ing the required condition at p=0. For the statement of this
condition we have to consider the properties of the Hert:z
function for large values of KkR.

It 1s known that for large values »f kR the so-called
"reflection formula" may be used. This formula gives an
approximation for the Hertz function in the whole space
above the earth's surface, where the inclination of the ray
to the horizon 1s not very small. If the Hertz function is

normalized as stated above, the reflection formula may be

written
eikR
U=(1+7) . (1.13)
R
where
p= Dcosy-n - sin y (1.14)

N CO8 Y +~4T - sin2 v

1s the Fresnel coefficlent (¥ 1s the incidence angle and
cos y=2z/R ir our case). The reflection formula 1s certainly
valid in the region where the inequalities

1 <« 553 << k= (1.15)
er :

(5)
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are satisfied.
1r | n| 1s large ana 1f

5 (1.16)

JEPOPROE AL e

then the Fresnel coefficient f 1s close to unity, and we have

Ay I A

eikR
U=2"-p— . (1.17)

St e e

When expressed in dimmensionless coordinates p,{, the inequalities

(1.15) and (1.16), which are necessary for formula (1.17) to be
valid, become

2
1 <« K 2 , 1.18
{t; Inle (1.18)
1 <<% K 2 hn|. (1.19)

To obtain the required condition for W at p—0, we must

carry out a double limiting process: firstly |n|—9a> and then

p—=0. In the 1imit |q|-—aQi§he right-hand sides of the in-
equalities may be dropped and we get

2
1¢ca; 1« &, 1.20
Y : (1.20)

If these relations are satisfied, the Hertz function tends to
(1.17) and then

Ry

W2 . (1.21)
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